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Abstract

The problem of the vibration of a beam subject to a travelling force is considered. The purpose of the
study is to develop simple tools for finding the maximum deflection of a beam for any given velocity of the
travelling force. It is shown that, for given boundary conditions, there exists a unique response–velocity
dependence function. A technique to determine this function is suggested, which is based on the assumption
that the maximum beam response can be adequately approximated by means of the first beam mode. To
illustrate this, the maximum response function is calculated analytically for a simply supported (SS) beam
and constructed numerically for a clamped–clamped beam. The effect of the higher modes on the maximum
response is investigated, and the relative error of the one-mode approximation for a SS beam is constructed.
The estimates obtained substantiate the assumption about adequacy of the one-mode approximation in a
wide range of velocities; in particular, the relative error in the neighborhood of the velocity that results in
the largest response is less than one percent.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The problem of calculation of the response of a beam subject to a travelling force, the moving
force problem (MFP), is a relatively simple one compared to those related to more realistic models
of vehicle–bridge interaction such as the moving mass and moving oscillator models. Many
methods for solving this problem were developed and discussed in the literature (see, e.g., Refs.
[1,2]; and references therein). One of the most well-known techniques is to represent the solution
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in a series form in terms of the eigenfunctions of the beam [2–5]. If the travelling force is constant,
the time-dependent coefficients can be obtained in an analytical form [2–4], which makes it easy to
find a solution to any particular problem. However, in many cases, it is not just the response of the
beam (which is a function of the spatial variable and time and depends on several parameters such
as beam characteristics, the magnitude of the force and its velocity) that the designer is interested
in. Given a particular beam and the magnitude of the travelling force, the following characteristics
may be of interest: the maximum response of the beam for a given velocity of the force, the
maximum response over all possible velocities and the velocity at which it occurs, the dependence
of the forced response and the amplitude of the free vibration on the velocity, and the like.
The numerical determination of such characteristics requires solving the MFP repeatedly and the
result is not generally applicable to other beams with different inertia and stiffness distributions.
The purpose of this study is to examine the dependence of the maximum response of a beam on

the velocity of the travelling force and to provide the engineer who faces the MFP with some
simple tools that make it possible to get some desired characteristics immediately by using routine
arithmetic operations. The major contribution of this work is the determination of unique
amplitude-velocity dependence functions for simply supported (SS) and clamped–clamped (CC)
beams, which allow for convenient assessment of the maximum beam response without intensive
computations. It is shown that the maximum response can adequately be approximated by one
term of the expansion. The effect of the higher terms of the expansion is investigated, and
estimates of relative error of the one-mode approximation are given, which substantiate the high
accuracy of the one-mode approximation. The maximum response of the unit dimensionless beam
with given boundary conditions (BCs) is either calculated analytically or computed numerically
only once. The application of the results obtained to a particular beam is straightforward and
requires only rescaling the parameters.
Although the moving force model is a relatively simple one, it is worthy of examination for the

following reasons. First, the knowledge of certain integral characteristics (rather than particular
solutions) of the moving force solution, which are obtained without any additional effort, can be very
useful for engineers and researchers when examining more realistic models of moving vehicles,
providing them with reasonable approximations of the desired results and helping to devise a plan of
attack on the problem. Second, the analysis of this model is still not trivial, and examples of
misinterpretation of the solution can be found in some textbooks (see, e.g., discussion in Section 4.1).

2. Problem statement

The equation governing vibration of a uniform beam subject to a constant force F traversing
the beam with a constant velocity v is given by

r
@2

@t2
w þ EI

@4

@x4
w ¼ Fdðx � vtÞ; 0pxpL; 0ptpL=v; ð1Þ

subject to given BCs. Introducing the dimensionless notation

%x ¼
x

L
; %t ¼ Ot; O ¼

1

L2

ffiffiffiffiffiffi
EI

r

s
; %w ¼

EIw

FL3
; %v ¼

v

LO
; %dð�Þ ¼ Ldð�Þ;
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we can write Eq. (1) in the form

@2

@%t2
%w þ

@4

@ %x4
%w ¼ %dð %x � %v%tÞ; 0p %xp1; 0p%tp1=%v: ð2Þ

Then it follows that the response %w is a function of only three parameters: %x; %t; and %v:
Let us set a problem of finding the function %Wð%vÞ ¼ max %x max%t j %wð %x; %t; %vÞj; which shows the

maximum deflection of the beam for a given velocity %v: As can be easily seen, this function
depends only on the dimensionless velocity and, thus, is unique for any beam with the same BCs.
Given the parameters r and EI ; the velocity v; and the magnitude F of the travelling force, the
maximum response of any beam with the same BCs is

W ðvÞ ¼ max
x
max

t
jwðx; t; vÞj ¼

FL3

EI
%W vL

ffiffiffiffiffiffi
r

EI

r� �
: ð3Þ

In what follows, we will use dimensionless quantities and will drop the overbars for simplicity of
notation when this does not result in any confusion.

3. Approach

The main difficulty associated with finding the function W ðvÞ is that, generally, this involves
solving problem (2) numerically many times to calculate the response wðx; t; vÞ for different values
of v:Moreover, the global maximum with respect to time can occur at the moment when the force
leaves the beam, which requires solving the problem of free vibration. Numerical finding of
maxx maxt jwðx; t; vÞj is also a rather complicated problem, since, for a given v; jwðx; t; vÞj is a non-
smooth function of two variables and may have many local maxima (this is further illustrated by
the example of a SS beam).
The approach we suggest in this work to find the function W ðvÞ is based on an approximate

solution to problem (2) and is as follows. The solution to the problem can be represented in the
series form

wðx; tÞ ¼
XN
n¼1

jnðxÞqnðtÞ; ð4Þ

where

qnðtÞ ¼
Z t

0

jnðvtÞ
on

sinonðt � tÞ dt; ð5Þ

and on and jnðxÞ are eigenfrequencies and eigenfunctions of the beam respectively.
It is well-known (e.g. Ref. [2]) that the contribution of the first mode in the response

considerably exceeds the contribution of the others. This allows us to assume that the use of the
first-mode approximation for the problem under consideration can be quite sufficient for our
purposes. Mathematically, we assume that, when calculating maxx maxt jwðx; tÞj; we can
substitute the function

w1ðx; tÞ ¼ q1ðtÞj1ðxÞ; ð6Þ
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for the exact solution wðx; tÞ even if w1ðx; tÞ poorly approximates wðx; tÞ for certain x and t: It is
almost evident that the relative error of calculation due to discarding the higher-order terms is
minimal for those values of x and t; for which the response is maximal. The validity of this
assumption will be further justified by the analysis of the contribution of the higher modes to the
maximum response of an SS beam given in Section 4.3 and by results of numerical experiments.
The use of the approach outlined above results in a considerable simplification of the

optimization problem. Indeed, instead of the function of two variables, we now deal with the
function of one variable, q1ðtÞ; since the dependence on x is trivial: the maximum is attained at
x ¼ 0:5:
Given that the one-mode approximation to the maximum response is found, one can take other

modes into account considering the contributions of those modes to the maximum response as
perturbations of the one-mode solution. This technique is demonstrated in Section 4 by calculating
the error of the one-mode approximation of the maximum response of a SS beam due to discarding
the second and third modes (in practice, the effect of the higher modes can certainly be neglected).
The function obtained is very useful: on the one hand, it gives an idea of relative error of the one-
mode approximation; on the other hand, if the researcher is not satisfied with the accuracy of the
one-mode approximation obtained, this function can be used to improve the solution.
For a SS beam, the coefficients qnðtÞ can be obtained in an explicit analytical form; the global

maximum of jq1ðtÞj can also be found analytically, which results in an explicit form of the function
describing the dependence of the maximum response on the dimensionless velocity. The analysis
of this case is given in the next section.
For other BCs, the eigenfunctions of the beam have more complicated form, and the analytical

examination becomes too involved. However, the numerical calculation of the time-dependent
coefficients, as well as finding their maxima numerically, presents no difficulties. Plotting the
results obtained versus dimensionless velocity, we get the desired function. In Section 5, we
demonstrate this by constructing the function W ðvÞ for a CC beam.

4. SS Beam

4.1. Background results

The eigenfunctions and eigenfrequencies of the unit SS beam are well-known to be
jnðxÞ ¼

ffiffiffi
2

p
sin lnx; on ¼ l2n; ln ¼ np; n ¼ 1; 2;y . Substituting the equation for jnðxÞ into

Eq. (5) and taking the integral by parts, we can write Eq. (4) in the form [3,4]

wðx; tÞ ¼
XN
n¼1

qnðtÞ
ffiffiffi
2

p
sin lnx; 0ptp

1

v
; ð7Þ

where

qnðtÞ ¼

ffiffiffi
2

p
onða2n � o2nÞ

ðan sinont � on sin antÞ; an ¼ lnv: ð8Þ

In Ref. [4, p. 471], it is stated that the displacement becomes infinitely large when an ¼ on; i.e.,
when the force velocity is equal to vn ¼ on=ln ¼ np: This is, of course, not true. Although, when
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an ¼ on; the denominator on the right-hand of Eq. (8) is zero, the numerator is zero as well.
Applying L’Hospital’s rule to the right-hand of Eq. (8) as an-on; we get

lim
an-on

qnðtÞ ¼ lim
an-on

ffiffiffi
2

p
ðsinont � ton cos antÞ

2onan

¼
sinont � ton cosontffiffiffi

2
p

o2n
;

which clearly shows that the qnðtÞ depends continuously on the velocity and is finite for any
tp1=v:
Similarly, in Ref. [3, p. 294], it is stated that Eq. (8) is valid only for anaon and that, otherwise,

‘‘a situation resembling resonance develops’’ (the solution infinitely grows in time). Clearly, this is
not correct: no resonance can occur since the force traverses the beam for a finite time (only half a
period of the first eigenvibration for n ¼ 1), and a finite solution does exist. Moreover, as will be
shown, the maximum of the beam response never occurs at these values of the velocity.

4.2. One-mode approximation to the solution

As discussed in Section 3, when looking for the maximum response W ðvÞ; we use function (6)
rather than wðx; tÞ:Depending on the velocity v; the maximum response may occur either when the
force traverses the beam (forced vibration) or when it leaves it (i.e., during the free vibration of the
beam). Clearly, in both cases, for any t; the maximum response with respect to x occurs at x ¼ 0:5;
and we need to find the maximum with respect to t: First, we consider the forced vibration.

4.2.1. Forced vibration
Let v be fixed, vav1; where v1 ¼ o1=l1 � p; and let us find the value of t for which jq1ðtÞj takes

its maximum value in the interval ½0;Tp
; where Tp ¼ 1=v: To find a maximum, we differentiate
Eq. (8)

’q1ðtÞ ¼

ffiffiffi
2

p
a1

a21 � o21
ðcoso1t � cos a1tÞ:

Since vav1; the right-hand side of this equation can be zero only if

o1t þ a1t ¼ 2kp; k ¼ 1; 2;y ;

or

o1t � a1t ¼ 2kp; k ¼ 1; 2;y ;

the latter points corresponding to local minima of q1ðtÞ or local maxima of �q1ðtÞ: Then, it follows
that local maxima of jq1ðtÞj can take place at

tðb1; kÞ ¼
2kp

o1 þ a1
�

2kp
o1ð1þ b1Þ

; k ¼ 1; 2;y ; ð9Þ

where b1 is the dimensionless velocity, introduced for convenience of notation as

b1 ¼
a1
o1

�
v

v1
�

v

p
:

Since we consider forced vibration, tðb1; kÞmust satisfy the inequality tðb1; kÞpTp: By using this, it
is not difficult to show that, for 1=ð4*n þ 1Þob1p1=ð4*n � 3Þ; jq1ðtÞj has n local maxima and the
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global maximum is attained at t ¼ tðb1; nÞ and is given by

maxjq1ðtÞj ¼

ffiffiffi
2

p
o21

F1n ðb1Þ;

where

F1nðb1Þ ¼
1

1� b1
sin

2np
1þ b1

				
				: ð10Þ

If b1 > 1 (v > v1), then tðb1; kÞ > Tp for all k: This implies that there are no maxima of jq1ðtÞj in
the interval ½0;TpÞ; and the maximum response of the forced vibration takes place when the force
is at the right end of the beam. The corresponding value of the time-dependent coefficient is
obtained by substituting t ¼ Tp into Eq. (8) and taking into account that a1Tp ¼ p; giving

q1ðTpÞ ¼

ffiffiffi
2

p
a1

o1ða21 � o21Þ
sino1Tp ¼

ffiffiffi
2

p
b1

o21ðb
2
1 � 1Þ

sin
p
b1

�

ffiffiffi
2

p
o21

F10ðb1Þ; b1X1:

Let k vary from 1 to N; we denote by F1ðb1Þ the function defined by the rule

F1ðb1Þ � F10ðb1Þ; for b1X1; F1ðb1Þ � F1kðb1Þ; for
1

4k þ 1
pb1p

1

4k � 3
: ð11Þ

In the beginning of this section, we assumed that vav1: However, as can be seen, the limits of the
functions F10ðb1Þ and F11ðb1Þ as b1-1 exist and equal each other, and the function F1ðb1Þ is thus
defined for all values of b1:
It can be checked directly that, for b1p1;

max
x
max

t
jw1ðx; tÞj ¼

ffiffiffi
2

p
max
0ptpTp

jq1ðtÞj ¼
2

o21
F1ðb1Þ �

2

p4
F1ðb1Þ;

i.e., the dependence of the maximum forced response on the velocity is given by the function
F1ðb1Þ: The plot of the function F1ðb1Þ is depicted in Fig. 1 by the solid line.

4.2.2. Free vibration

As was mentioned, the maximum response may take place after the force leaves the beam. The
equation governing the free vibration of the beam is derived in Appendix A. Since we consider the
one-mode approximation to the solution, the maximum response is assumed to be equal to the
amplitude jC1ðvÞj of the first eigenvibration. Introduce the notation

Ffree
1 ðb1Þ ¼

2b1
jb21 � 1j

sino1
1

2p
þ

Tp

2

� �				
				 � 2b1

jb21 � 1j
sin

p
2

b1 þ 1
b1

� �				
				: ð12Þ

Then, the amplitude is given by

jC1ðb1Þj ¼
2

o21
Ffree
1 ðb1Þ: ð13Þ

The function Ffree
1 ðb1Þ; depicted in Fig. 1 by the dashed line, is not specific to any particular SS

beam and shows the dependence of the amplitude of the first beam eigenvibration on the
dimensionless velocity of the moving force.
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4.2.3. Maximum response
Fig. 1 explicitly shows that, if the velocity of the travelling force is less than v1 ¼ p (b1o1), the

maximum response of the forced vibration is greater than the amplitude of the free vibration. If
v > v1; the maximum response occurs when the force leaves the beam. Denote

C1ðb1Þ ¼
F1ðb1Þ for 0ob1p1;

Ffree
1 ðb1Þ for 1pb1oN:

(
ð14Þ

Then,

W1ðvÞ � max
x
max

t
jw1ðx; t; vÞj ¼

2

o21
C1ðb1Þ �

2

p4
C1

v

p

� �
: ð15Þ

The maximum of the function C1ðb1Þ is approximately equal to 1.75 (it should be noted that this
value has been obtained earlier in [6]) and is attained at b1E0:62 (vE2). As v decreases, F1ðb1Þ
tends to one, which corresponds to the maximum response of the beam given by 2=p4E1=48:7;
which is very close to the exact static deflection 1

48
of the beam due to the unit force applied at the

midspan.

4.3. Modal response functions for the higher modes

Note that the results of Section 4.2 can be applied with small changes to finding maxima of the
higher terms wnðx; tÞ ¼ jnðxÞqnðtÞ of expansion (4),WnðvÞ ¼ maxxmaxtjwnðx; t; vÞj: These functions
will be referred to in what follows as the modal response functions (MRF).
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Fig. 1. Functions F1ðb1Þ (——) and Ffree
1 ðb1Þ (- - -).
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Differentiating Eq. (8), we find that the values of t at which local maxima of the jqnðtÞj are
attained are again given by Eq. (9) and that the functions describing these maxima are given by
Eq. (10) upon substitution of bn and on for b1 and o1; where

bn ¼
an

on

�
lnv

on

�
v

vn

; ð16Þ

and vn ¼ on=ln ¼ nv1 ¼ np: Using the constraint tðbn; kÞpTp; one can determine the domain of
each of the functions (10) and construct the function describing the global maximum of the forced
response due to the excitation of the nth mode. As n increases, the corresponding formulas
become more involved for small values of bn: However, they can be very well approximated by
linear functions in this region. For example, for the second mode, we have

F2ðb2Þ ¼

1þ 6ðF15ð1=6Þ � 1Þb2; 0pb2p1=6;
F15ðb2Þ; 1=6pb2p1=5;
F14ðb2Þ; 1=5pb2p1=4;
F11ðb2Þ; 1=4pb2p1=2;
F12ðb2Þ 1=2pb2p1;

8>>>>>><
>>>>>>:

ð17Þ

with the relative error of the linear approximation being less than 1%.
The amplitude of free beam vibration due to the nth mode is calculated in exactly the same way

as in Section 4.2 resulting in the equation

jCnðbnÞj ¼
2

o2n
Ffree

n ðbnÞ; ð18Þ

where

Ffree
n ðbnÞ ¼

2bn

jb2n � 1j
sinon

1

2p
þ

Tp

2

� �				
				 � 2bn

jb2n � 1j
sin

np
2

nbn þ 1
bn

� �				
				: ð19Þ

The functions F2ðb2Þ and Ffree
2 ðb2Þ are depicted in Fig. 2 by the solid and dashed lines,

respectively. As can be seen, the amplitude of the free vibration is less than the maximum forced
response for b2p1 and exceeds it if b2 > 1 (v > 2p). Thus, the MRF for the second mode is given
by

W2ðvÞ � max
x
max

t
w2ðx; t; vÞj ¼

2

o22
C2ðb2Þ �

1

8p4
C2

v

2p

� �
; ð20Þ

where

C2ðb2Þ ¼
F2ðb2Þ; for 0ob2p1;

Ffree
2 ðb2Þ for 1pb2oN:

(
ð21Þ

The maximum value of C2ðb2Þ over all velocities is attained at b2E0:85 and is approximately
equal to 3.25. This function is not specific to any particular beam and describes the dependence on
the dimensionless velocity of the maximum response of the beam due to the excitation of the
second mode only.
Function C2ðb2Þ given by Eq. (21) can be used to calculate the maximum response of a

beam with an additional support at the middle point. Indeed, the first eigenfrequency and
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eigenfunction of such a beam coincide with the second eigenfrequency and eigenfunction of an SS
beam without the additional support. Then, the maximum response of this beam is given by
Eq. (20).
Comparison of C2ðb1Þ and C2ðb2Þ; with regard to Eqs. (15), (20) and the relation b1 ¼ 2b2;

shows that, if vov1; W2ðvÞ is less than W1ðvÞ by the factor of o22=o
2
1 ¼ 16: The ratio W2ðvÞ=W1ðvÞ

is maximal in the neighborhood of the point b2 ¼ 0:85; i.e., when vE0:85v2 ¼ 1:7v1 and is
approximately equal to 1

5
: When b1-N (vcp), the ratio can be shown to have the asymptotic

ðo21=o
2
2Þ8p=b

2
1 ¼ p3=2v2: To get an idea of relative magnitudes of the modal response functions

W1ðvÞ; W2ðvÞ; and W3ðvÞ; they are depicted together in Fig. 3.
It is well-known (and can easily be shown by using the technique described above) that, for

small velocities, the contribution of the higher modes can be estimated as o2n=o
2
1 ¼ ð1=nÞ4 and thus

can certainly be neglected. Therefore, we only need to estimate the effect of the nth mode in the
neighborhood of the velocity where maxtjqnðtÞj takes its maximum value and to examine the
asymptotics for large values of the velocity. It can be shown that the maximum of the function
WnðvÞ is attained at bnE1 (vEnp) and is given by

2

o2n
max
bn

F1nðbnÞE
2

ðnpÞ4
np
2

¼
1

p3n3
:

Then, it follows that, for vEnp; WnðvÞ=W1ðvÞEp=4n2: The asymptotics of the function
WnðvÞ=W1ðvÞ for large v; vcvn; can be shown to be ð1=nÞ3:
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4.4. Contribution of the higher modes to the maximum response

The modal response functionWnðvÞ shows the maximum value of the nth term of expansion (4)
and gives an idea of the velocity range where the effect of the nth term is maximal. However, the
maximum beam response W ðvÞ is not an algebraic sum of the MRFs. Since the maxima of
different terms of expansion (4) are attained at different t and x; the contribution of the higher
terms to the maximum response is, in fact, considerably less than it may seem from the
comparison of the modal response functions. To demonstrate this and to see how the second and
third modes contribute to the maximum beam response, we calculate the three-mode
approximation of the maximum beam response. Since, as was shown above, the maxima of
jq2ðtÞj and jq3ðtÞj are much less than that of jq1ðtÞj; we can treat the second and third terms of
expansion (4) as perturbations and assume that the maximum of jwðx; t; vÞj is attained at x ¼
0:5þ Dx and t ¼ t0 þ Dt; where t0ðvÞ ¼ arg maxtjq1ðt; vÞj is given by one of functions (9) and Dx

and Dt are small.
Let first, vpv1 ¼ p: The three-mode approximation of the response is given by

wðx; t; vÞ ¼
ffiffiffi
2

p
q1ðtÞsin px þ q2ðtÞsin 2px þ q3ðtÞsin 3pxÞf g

¼
ffiffiffi
2

p
q1ðt0Þ *q1ðtÞsin px þ eðvÞ *q2ðtÞsin 2px þ dðvÞ *q3ðtÞsin 3pxÞf g;

where eðvÞ ¼ q2ðt0Þ=q1ðt0Þ and dðvÞ ¼ q3ðt0Þ=q1ðt0Þ are small parameters (it follows from the above
discussions that jeðvÞjp1=16 and jdðvÞjp1=81), *q1ðtÞ; *q2ðtÞ; and *q3ðtÞ are of the same order of
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magnitude, and *q1ðt0Þ ¼ *q2ðt0Þ ¼ *q3ðt0Þ ¼ 1: Then, expanding all functions into Taylor series in
the neighborhood of x ¼ 0:5 and t ¼ t0 and ignoring small terms of order greater than two, we
find that Dw � wð0:5þ Dx; t0 þ Dt; vÞ is given by

DwE
ffiffiffi
2

p
q1ðt0Þ 1� .*q3ðt0Þ

ðDtÞ2

6
�

ðpDxÞ2

2
� 2eðpDxÞ � d� d’*q3ðt0ÞDt

� �
: ð22Þ

Equating the derivatives with respect to Dt and ðpDxÞ to zero, we obtain

�pDx � 2e ¼ 0; �.*q1ðt0ÞDt � d’*q3ðt0Þ ¼ 0:

Then, it follows that the maximum of Dw is attained for

Dx ¼ �
2e
p

ð23Þ

and Dt ¼ OðdÞ: The particular dependence of Dt on d is of no importance since the right-hand of
Eq. (22) linearly depends on d; whereas the terms containing Dt have the higher order of smallness
and can be ignored. The corresponding value of the maximum response is then given by

W ðvÞ ¼ max
Dx

max
Dt

jDwj ¼ W1ðvÞ 1� dþ 2e2 þ oðdÞ þ oðe2Þ
� �

; 0pvpp: ð24Þ

Let now, v > v1: In this case, the maximum response occurs when the force leaves the beam and
the functionW1ðvÞ is equal to the amplitude jC1ðvÞj of the free vibration at the first eigenfrequency.
Since, as was shown, jC1ðvÞj is much greater than the amplitudes of the other eigenvibrations, we
can again calculate an approximate amplitude of the resulting vibration by using perturbation
theory. It follows from Eq. (A.3), derived in Appendix A, that the amplitude of the free vibration
can be calculated as

jCðvÞj ¼ max
x

ðC1ðvÞsin px7C2ðvÞsin 2px þ C3ðvÞsin 3pxÞ; ð25Þ

where CnðvÞ; n ¼ 1; 2; 3; is the amplitude with sign of the nth beam eigenvibration, given by
Eq. (A.2). Similar to the case of the forced vibration, we introduce the small parameters eðvÞ ¼
C2ðvÞ=C1ðvÞ and dðvÞ ¼ C3ðvÞ=C1ðvÞ and rewrite Eq. (25) in the form

jCðvÞj ¼ jC1ðvÞjmax
x

ðsin px7eðvÞsin 2px þ dðvÞsin 3pxÞ:

Expanding the sines into Taylor series in the neighborhood of x ¼ 0:5; we get

jCðvÞjEjC1ðvÞj 1�
ðpDxÞ2

2
7epDx � dþ d

9ðpDxÞ2

2

� �
: ð26Þ

The last term in this equation has the higher order of smallness compared to the other three terms;
however, we do not ignore it in order to improve the approximation (in addition, it represents the
combined effect of the second and third modes on the response). Differentiating the right-hand of
Eq. (26) with respect to Dx; we obtain

Dx ¼ 7
2e

1� 9d
: ð27Þ
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Substituting the Dx into Eq. (26), we finally obtain

W ðvÞ ¼ jCðvÞjEjC1ðvÞj 1� dþ
2e2

1� 9d

� �
; vXv1: ð28Þ

The right-hand of Eq. (28) is shown in Fig. 3 by the dashed line. Note that the improved solution
(24) for the forced response is not depicted since it coincides with the unperturbed functionW1ðvÞ:
Combining both cases considered, we get

W ðvÞ ¼ W1ðvÞð1þ rðvÞÞ;

where the function

rðvÞ ¼
�dðvÞ þ 2e2ðvÞ; 0pvpp;

�dðvÞ þ
2e2ðvÞ
1þ 9dðvÞ

; vXp;

8><
>: ð29Þ

used to improve the one-mode approximation is depicted in Fig. 4. It explicitly shows that
the accuracy of the one-mode approximation of the maximum response is very good in a wide
range of the velocities. In the most interesting range of velocities, 0ovo4 (where the maximum
response is greater then the static deflection), the relative error is less than 2%. This result
substantiates the assumption that the one-mode approximation of the maximum response is quite
adequate.
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Fig. 4. The relative error (29) of the one-mode approximation for an SS beam.
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5. CC Beam

In the case of a CC beam, the analytical construction of the function W ðvÞ seems to be too
complicated, and we constructed it numerically. In our experiments, letting v take discrete values
vi; i ¼ 1; 2;y; we numerically calculated the time-dependent coefficients q1ðt; viÞ and found their
maxima, maxt jq1ðt; viÞj:Using the values of the time-dependent coefficients and their derivatives at
t ¼ Tp; we calculated the amplitude of free vibration C1ccðviÞ: As in the case of an SS beam, a
velocity v1cc exists such that, for vov1cc; the maximum response occurs at a time when the force is
on the beam and, for v > v1cc; the maximum deflection takes place after the force leaves the beam
(free vibration). The value of v1cc was experimentally found to be about twice the critical velocity
v1 for an SS beam, v1ccE2p: The plots of the functions

F1ccðvÞ ¼
o21cc

j1ccð0:5Þ
max

t
jq1ðt; vÞj; Ffree

1cc ðvÞ ¼
o21cc

j1ccð0:5Þ
C1ccðvÞ;

(analogues of F1ðb1Þ and Ffree
1 ðb1Þ for an SS beam shown in Fig. 1) are depicted in Fig. 5 versus

the velocity v=v1cc: As can be seen from comparison of Figs. 1 and 5, the curves describing the
maximum forced response and the amplitude of the free vibration for SS and CC beams are
similar enough to each other such that one can use the functions F1ðb1Þ and Ffree

1 ðb1Þ; which are
found in analytical form, instead of the functions F1ccðb1Þ and Ffree

1cc ðb1Þ upon substitution of
v=ð2pÞ for b1:
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Fig. 5. Functions F1ccðv=2pÞ (——) and Ffree
1cc ðv=2pÞ (- - -).
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The maximum response of the CC beam is calculated as

W1ccðvÞ ¼
j21ccð0:5Þ
o21cc

max F1ccðvÞ;F
free
1cc ðvÞ

n o
:

The plot of the function W1ccðvÞ obtained is shown in Fig. 6 (curve 1). This function describes
the one-mode approximation of the maximum response of the beam as a function of
the dimensionless velocity. Curves 2 and 3 in this figure show the functions W2ccðvÞ
and W3ccðvÞ; respectively. These functions were also calculated numerically in a similar way
by using the functions q2ðtÞ and q3ðtÞ: The maximum response of a CC beam over all velocities
occurs at vE3:6; which is about 1.8 times greater than that of an SS beam. The value of the
maximum response of a CC beam is about 25% of that of the same beam with simply supported
ends, which is approximately equal to ðj1ccð0:5Þ=j1ssð0:5ÞÞ

2ðo1ss=o1ccÞ
2; where the superscripts ss

and cc are used to denote the eigenfrequencies and eigenfunctions of the SS and CC beams,
respectively.
It can be seen from Fig. 6 that the ratios W2ccðvÞ=W1ccðvÞ and W3ccðvÞ=W1ccðvÞ are greater

than those for an SS beam, which can be explained by the fact the ratios of the second and third
eigenfrequencies to the first one are less than those for an SS beam. The relative error of the one-
mode approximation of the maximum response can be calculated similar to the case of an SS
beam (Section 4.4). For vo2p; the relative error was shown to be less than 3%.
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Fig. 6. MRFs W1ðvÞ (curve 1), W2ðvÞ (curve 2), and W3ðvÞ (curve 3) of a CC beam.
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6. Discussion of the results obtained

As can be seen from the above discussion, the use of the one-mode approximation for the
calculation of the maximum response is quite adequate for engineering applications. The
functions W1ðvÞ and W1ccðvÞ (Figs. 3 and 6) constructed in Sections 4 and 5 make it possible to
calculate the maximum response of an arbitrary SS or CC beam by simply rescaling the plots. A
summary of some analytical results (simple, ready-to-use, rules) is given below. Note that these
results are formulated in terms of the first beam eigenfrequency o1 and the critical velocity
v1 ¼ o1ssL=p in order to make them applicable to both the dimensional and dimensionless beams.
The value of the maximum response for a dimensional beam is obtained (see Eq. (3)) from that for
the dimensionless beam by multiplying by the factor FL3=EI :

(1) The maximum response of an SS beam over all velocities occurs when the force is on the beam
at v ¼ vpeakE0:62v1 and is equal to W1ðvpeakÞE3:5=o21; which is about 80% more than the
static deflection of the beam due to the force of the same magnitude applied at the midspan of
the beam. If the passage time is less than the half-period of the first beam eigenvibration
(v > v1) the maximum response occurs when the force leaves the beam. If v > 2v1; the
maximum response is less than the static deflection (Fig. 1).

(2) The maximum response of a CC beam over all velocities is attained at vE1:8vpeak and is
approximately equal to 1:7j21=o

2
1E4:3=o

2
1; which is about 4.2 times less than that of the same

beam with simply supported ends. If v > 2v1; the maximum response of a CC beam takes place
when the force leaves the beam (Fig. 5).

(3) In the neighborhood of maximum response over all velocities, variation of the velocity by
25% results in variation of the maximum response of the order of 5% (Figs. 1 and 5).

(4) To reduce the maximum response by about 20%, the velocity must be either half of vpeak or
twice as much as vpeak (Fig. 1).

(5) The amplitude of the free vibration of an SS beam is minimal (the first beam eigenvibration is
completely suppressed) when b1 ¼

1
3
; 1
5
; 1
7
; y; these values of b1 correspond to the velocities for

which the passage time Tp is an odd multiple of the half-period of the first beam
eigenvibration: Tp ¼ 3ðT1=2Þ; 5ðT1=2Þ; 7ðTp=2Þ; y (Fig. 1).

(6) If an SS beam has an additional support at the middle point, the maximum response at
v ¼ vpeak is about 20 times less than that of the beam without the support. The maximum
response over all velocities of such a beam is approximately 8.5 times less than W1ðvpeakÞ and
is attained at vE2:7vpeak (Figs. 1 and 2).

(7) For an SS beam, the one-mode approximation W1ðvÞ gives the exact solution for the
maximum response at v ¼ v1:

7. Conclusions

The problem of finding the maximum response of a beam subject to a travelling force has been
examined. It has been shown that there exists a unique function describing the dependence of the
maximum response of an arbitrary beam with given boundary conditions on the velocity of
the travelling force. This function allows for convenient assessment of the maximum response for
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the MFP without intensive computations. This result can be quite useful for design engineers and
researchers facing the MFP.
The technique to find an approximate solution to the problem under examination based on the

use of one term of the expansion of the solution has been suggested. The maximum response as a
function of the velocity of the travelling force has been calculated in explicit form for a simply
supported (SS) beam and constructed numerically for a clamped–clamped (CC) beam. The
relative error of the one-mode approximation of the maximum response in the neighborhood of
the ‘‘dangerous’’ velocity (where the maximum response takes its maximum value) has been
shown to be less than 1% for an SS beam and 3% for a CC beam, which is quite sufficient for
engineering applications. The basic advantage of the results reported herein is that they provide
the engineer with very simple tools making it possible to get answers to a number of important
questions without solving the moving force problem. While only the SS and CC beams have been
considered, the response–velocity dependence function examined in this study is generic for
structural systems, and the method used in this work can be applied to finding the maximum
response functions for other structural systems.
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Appendix A. Free vibration of the beam after the force leaves it

After the force leaves the beam, the equation governing its vibration is well-known to be

wðx; tÞ ¼
XN
n¼1

An cosonðt � TpÞ þ Bn sinonðt � TpÞ
� � ffiffiffi

2
p

sin npx; tXTp; ðA:1Þ

where the coefficients An and Bn are easily obtained by comparing Eqs. (4) and (A.1) at t ¼ Tp [5]
with regard to the orthogonality of the eigenfunctions: An ¼ qnðTpÞ and Bn ¼ ’qnðTpÞ=on: Using
Eq. (8) and the equality anTp ¼ np and denoting gn ¼

ffiffiffi
2

p
an=onða2n � o2nÞ; we find that

qnðTpÞ ¼ gn sinonTp; ’qnðTpÞ ¼ gnonðcosonTp � ð�1ÞnÞ:

Then we have

An cosonðt � TpÞ þ Bn sinonðt � TpÞ

¼ qnðTpÞcosonðt � TpÞ þ
’qnðTpÞ
on

sinonðt � TpÞ

¼ gn sinonTp cosonðt � TpÞ þ cosonTp sinonðt � TpÞ � ð�1Þnsinonðt � TpÞ
� �

¼ gn sinont � sinon t �
1

p
� Tp

� �� �
¼ 2gn sinon

1

2p
þ

Tp

2

� �
coson t �

1

2p
�

Tp

2

� �
:
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Substituting this into Eq. (30) and denoting

CnðvÞ ¼
4an

onða2n � o2nÞ
sinon

1

2p
þ

Tp

2

� �
; ðA:2Þ

we get

wðx; tÞ ¼
XN
n¼1

CnðvÞcoson t �
1

2p
�

Tp

2

� �
sin npx; tXTp: ðA:3Þ

Then it follows that the free vibration is the sum of the eigenvibrations at the eigenfrequencies on

with the amplitudes jCnðvÞj and is periodic with the period being equal to the period of the first
eigenvibration T1 ¼ 2=p: It can be checked directly that, when coso1ðt � 1=2p� Tp=2Þ ¼ 71;
cosonðt � 1=2p� Tp=2ÞÞ ¼ ð71Þn: This implies that all modes of the vibration at these times are
either in phase or out of phase, depending on the signs of the factors CnðvÞ:

References

[1] W. Weaver, S.P. Timoshenko, D.H. Young, Vibration Problems in Engineering, 5th Edition, Wiley, New York,

1990, pp. 448–454.

[2] L. Fr!yba, Vibration of Solids and Structures under Moving Loads, Thomas Telford Ltd., London, 1999.

[3] L. Meirovitch, Analytical Methods in Vibrations, MacMillan, London, 1967.

[4] D.G. Fertis, Mechanical and Structural Vibrations, Wiley, New York, 1995.

[5] A.V. Pesterev, L.A. Bergman, Response of elastic continuum carrying moving linear oscillator, American Society of

Civil Engineers, Journal of Engineering Mechanics 123 (1997) 878–884.

[6] E.S. Eichmann, Note on the maximum effect of a moving force on a simple beam, American Society of Mechanical

Engineers, Journal of Applied Mechanics 20 (1953) 562.

A.V. Pesterev et al. / Journal of Sound and Vibration 261 (2003) 75–91 91


	Revisiting the moving force problem
	Introduction
	Problem statement
	Approach
	SS Beam
	Background results
	One-mode approximation to the solution
	Forced vibration
	Free vibration
	Maximum response

	Modal response functions for the higher modes
	Contribution of the higher modes to the maximum response

	CC Beam
	Discussion of the results obtained
	Conclusions
	Acknowledgements
	Free vibration of the beam after the force leaves it
	References


